Changing the Subject of the Formula

1. Transpose $v = u + at$ for t.
2. Transpose $A = P + I$ for P.
3. Transpose $p = H + h$ for H.
4. Transpose $I_1 = I + ma^2$ for I.
5. Transpose $I = I_g + MH^2$ for I_g.
6. Transpose $I = I_x + I_y$ for I_x.
7. Transpose $I = I_1 + I_2$ for I_2.
8. Transpose $R = R_1 + R_2$ for R_1.
10. Transpose $I = T + A + R$ for A.
11. Transpose $t_\alpha + a_\alpha + r_\alpha = 1$ for r_α.
12. Transpose $c_p = c_v + R$ for c_v.
13. Transpose $v = u + at$ for u.
14. Make d the subject of the formula $s = d - x$.
15. Make w_1 the subject of the formula $2\pi f = w_1 - w_2$.
16. Make S_2 the subject of the formula $e = S_2 - S_1$.
17. Make I_1 the subject of the formula $I = I_1 - ma^2$.
18. Make c_p the subject of the formula $R = c_p - c_v$.
19. Make H the subject of the formula $U = H - pV$.
20. Make ℓ_2 the subject of the formula $\ell_2 - \ell_1 = \alpha \ell t$.
21. Make T_k the subject of the formula $T_k - t = 273$.
22. Make v the subject of the formula $at = v - u$.
23. Make R the subject of the formula $R - mg = ma$.
24. Make A the subject of the formula $p = A - h$.
25. Make p_2 the subject of the formula $p_2 - p_1 = \frac{2\gamma}{r}$.
26. Make p_2 the subject of the formula $p_2 - p_1 = \frac{2\gamma \cos \theta}{r}$.
27. Transpose the formula $C = RT$ to make R the subject of the formula.
28. Transpose the formula $m = V_p$ to make p the subject of the formula.
29. Transpose the formula $p = hpg$ to make h the subject of the formula.
30. Transpose the formula $F = EA\alpha t$ to make α the subject of the formula.
31. Transpose the formula $pV = nRT$ to make R the subject of the formula.
32. Transpose the formula $C = 4\pi \varepsilon_0 r$ to make s_0 the subject of the formula.
33. Transpose the formula $I = nAve$ to make n the subject of the formula.
34. Transpose the formula $H = PRe t$ to make t the subject of the formula.
35. Transpose the formula $F = Bev$ to make B the subject of the formula.
36. Transpose the formula $W = mgh$ to make h the subject of the formula.
37. Transpose the formula $W = IVt$ to make t the subject of the formula.
38. Transpose the formula $W = (V - ay)p$ to make p the subject of the formula.
39. Transpose the formula $IVt = (mc + C)\theta$ to make θ the subject of the formula.
40. Transpose the formula $p = \frac{F}{A}$ for F.
41. Transpose the formula \(p = \frac{4\gamma}{r} \) for \(r \).
42. Transpose the formula \(p = \frac{m}{V} \) for \(m \).
43. Transpose the formula \(\lambda = \frac{ay}{D} \) for \(y \).
44. Transpose the formula \(W = \frac{neV}{p} \) for \(p \).
45. Transpose the formula \(\mu = \frac{F}{R} \) for \(F \).
46. Transpose the formula \(T = \frac{2\pi}{w} \) for \(w \).
47. Transpose the formula \(T = \frac{kV}{aA} \) for \(A \).
48. Transpose the formula \(\frac{Q}{V} = 4\pi\varepsilon_0r \) for \(V \).
49. Transpose the formula \(B = \frac{\mu_0NI}{2r} \) for \(\mu_0 \).
50. Transpose the formula \(\tan \theta = \frac{F}{mg} \) for \(g \).
51. Transpose the formula \(v_a = -\frac{GM}{a} \) for \(a \).
52. Transpose the formula \(F = EA \frac{e}{A} \) for \(C \).
53. Transpose the formula \(h = \frac{2\gamma \cos \theta}{r p g} \) for \(g \).
54. Transpose the formula \(H_1 = \frac{H_2}{(m_1 + m_2)\theta_1}{(m_2 + m_2)\theta_2} \) for \(\theta \).
55. Transpose the formula \(\frac{F - 32}{c} = \frac{9}{5} \) for \(c \).
56. Transpose the formula \(\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} \) for \(T_2 \).
57. Transpose the formula \(W = \frac{4}{3}\pi a^3 p g \) for \(g \).
58. Transpose the formula \(4\pi \rho = \frac{3g}{r G} \) for \(G \).
59. Transpose \(V = u + at \) for \(t \).
60. Transpose \(x = ut + \frac{1}{2}at^2 \) for \(a \).
61. Transpose \(v^3 = u^2 + 2ax \) for \(x \).
62. Transpose \(R = mg + ma \) for \(a \).
63. Transpose \(\gamma = \frac{h_1}{h_1 - h_2} \) for \(h_2 \).
64. Transpose \(\gamma = \frac{V_2 - V_1}{V\theta} \) for \(v_2 \).
65. Transpose \(p = P + \frac{2\gamma}{r} \) for \(r \).
66. Transpose \(Q = kA \frac{\theta_2 - \theta_1}{\ell} \) for \(\theta_2 \).
67. Transpose \(n = 1 + \frac{r}{f} \) for \(f \).
68. Transpose \(I = \frac{E}{R + r} \) for \(r \).
69. Transpose \(I_e = \frac{V - E}{R_e} \) for \(E \).
70. Transpose \(u = \ell + \frac{M}{H} \) for \(H \).
71. Transpose \(V = 2f(\ell_1 - \ell) \) for \(\ell \).
72. Transpose \(m\dot{v} + v_0 = \frac{1}{r} \) for \(r \).
73. Transpose \(\ell_2 - \ell_1 = \alpha \ell t \) for \(\ell \).
74. Transpose \(\ell_r = \ell(1 + \alpha t) \) for \(t \).
75. Transpose \(A_2 = A_1(1 + \beta) \) for \(\beta \).
76. Transpose \(V_e = V_0(\frac{273}{273} + \frac{t}{273}) \) for \(t \).
77. Transpose \(R_t = R_0(\ell + \frac{t}{273}) \) for \(t \).
78. Transpose \(q = m(t_2 - t_1) \) for \(t_1 \).
79. Transpose \(IVt = (mc + C)\theta \) for \(\theta \).
80. Transpose \(\frac{Q}{t} = k\theta_1\theta_2 \) for \(\theta_2 \).
81. Transpose \(\frac{1}{l_0} + 1 = \frac{1}{l_0} \) for \(l_0 \).
82. Transpose \(W = (V - ay)p \) for \(a \).
83. Transpose \(\gamma = \frac{mg}{2(a + b)} \) for \(b \).
84. Transpose \(p_2 - p_1 = \frac{2\gamma \cos \theta}{r} \) for \(p_1 \).
85. Make \(W \) the subject of the formula.
\[W = \sqrt{W_1 W_2} \]
86. Make \(p \) the subject of the formula.
\[V = \sqrt{\frac{yp}{\rho}} \]
87. Make \(m \) the subject of the formula.
\[V = \sqrt{\frac{T_v}{m}} \]
88. Make \(k \) the subject of the formula \(V = \sqrt[3]{\frac{k}{\rho}}. \)
89. Make \(\rho \) the subject of the formula \(V = \sqrt[3]{\frac{E}{\rho}}. \)
90. Make \(r \) the subject of the formula \(v = \sqrt{2gr}. \)
91. Make \(r \) the subject of the formula \(v = \sqrt{\frac{2GM}{r}}. \)
92. Make \(e \) the subject of the formula \(v = \sqrt{\frac{2eV}{m}}. \)
93. Make \(E \) the subject of the formula \(v = \sqrt{\frac{1}{uE}}. \)
94. Make \(\ell \) the subject of the formula \(T = \frac{\ell}{\sqrt{8}}. \)
95. Make \(m \) the subject of the formula \(\nu = k \sqrt{\frac{F\ell}{m}}. \)
96. Make \(\ell \) the subject of the formula \(\nu = k \sqrt{\frac{T}{s/\ell}}. \)
97. Make \(g \) the subject of the formula \(t = \sqrt{\frac{3s}{g \sin \alpha}}. \)
98. Make \(\ell \) the subject of the formula \(t = 2\pi \sqrt{\frac{\ell}{g}}. \)
99. Make \(g \) the subject of the formula \(T = 2\pi \sqrt{\frac{2a}{g}}. \)
100. Make \(e \) the subject of the formula \(T = 2\pi \sqrt{\frac{e}{g}}. \)
101. Make \(g \) the subject of the formula \(T = 2\pi \sqrt{\frac{l}{g}}. \)
102. Make \(I \) the subject of the formula \(T = 2\pi \sqrt{\frac{I}{mgh}}. \)
103. Make \(m \) the subject of the formula \(f = \frac{1}{2\ell} \sqrt{\frac{T}{m}}. \)
104. Make \(L \) the subject of the formula \(f_0 = \frac{1}{2\pi \sqrt{LC}}. \)
105. Make \(a \) the subject of the formula \(f = \frac{V}{2\pi \sqrt{\frac{a}{V}}}. \)
106. Make \(s \) the subject of the formula \(T = 2\pi \sqrt{\frac{m + \lambda s}{k}}. \)
107. Make \(p \) the subject of the formula \(\ell = \sqrt{\frac{3Nmc^2}{2p}}. \)
108. Make \(g \) the subject of the formula \(R = \sqrt{\frac{gT^2r^2}{4\pi^2}}. \)
109. Make \(E \) the subject of the formula \(T = \frac{E}{\sqrt{g}}. \)
110. Transpose the formula \(P = PR \) to make \(I \) the subject.
111. Transpose the formula \(a = rv^2 \) to make \(iv \) the subject.
112. Transpose the formula \(H = PRT \) to make \(I \) the subject.
113. Transpose the formula \(E = mc^2 \) to make \(c \) the subject.
114. Transpose the formula \(a = \frac{V^2}{r} \) to make \(v \) the subject.
115. Transpose the formula \(F = \frac{mv^2}{r} \) to make \(v \) the subject.
116. Transpose the formula \(E = \frac{I}{d^2} \) to make \(d \) the subject.
117. Transpose the formula \(P = \frac{V^2}{R} \) to make \(V \) the subject.
118. Transpose the formula \(H = \frac{V^2t}{R} \) to make \(V \) the subject.
119. Transpose the formula \(M = \frac{Gr^2}{G} \) to make \(r \) the subject.
120. Transpose the formula \(W = \frac{1}{2} mu^2 \) to make \(u \) the subject.
121. Transpose the formula \[F = \frac{GmM}{r^2} \] to make \(r \) the subject.

122. Transpose the formula \(\tan \theta = \frac{v^2}{rg} \) to make \(v \) the subject.

123. Transpose the formula \[F = \frac{4\pi^2mr}{T^2} \] to make \(T \) the subject.

124. Transpose the formula \[E = \frac{Q}{4\pi\sigma r^2} \] to make \(r \) the subject.

125. Transpose the formula \[c = \frac{8\pi ma^3\ell}{(b+c)y} \] to make \(a \) the subject.

126. Transpose the formula \[I_1 = l + ma^2 \] to make \(a \) the subject.

127. Transpose the formula \[I_0 = l + Mh^2 \] to make \(h \) the subject.

128. Transpose the formula \[\ell = \frac{k^2 + h^2}{h} \] to make \(k \) the subject.

129. Transpose the formula \[n = \sqrt{n_0^2 - \sin^2 \theta} \] to make \(n_0 \) the subject.

130. Transpose the formula \[Z = \sqrt{X_e^2 + R^2} \] to make \(R \) the subject.

131. Transpose the formula \[Z = \sqrt{(X_L - X_C)^2 + R^2} \] to make \(R \) the subject.

132. Transpose the formula \[r = w\sqrt{r^2 - y^2} \] to make \(y \) the subject.

133. Transpose the formula \(P - mg = \frac{mv^2}{\ell} \) to make \(v \) the subject.

134. Transpose the formula \[R = \frac{1}{2} \left(g - \frac{v^2h}{ra} \right) \] to make \(v \) the subject.

135. Transpose the formula \[P = \frac{1}{3} \frac{Nm\ell^2}{c^2} \] to make \(\ell \) the subject.

136. Transpose the formula \[g = \frac{4\pi^2R^3}{r^2T^2} \] to make \(R \) the subject.

137. Transpose the formula \[T^2 = \frac{4\pi^2R^3}{8r^2} \] to make \(R \) the subject.

138. Transpose the formula \[E = \sigma T^4 \] to make \(T \) the subject.

139. Transpose the formula \[\frac{Q}{2\pi} = \frac{T_1^4}{T_2^4} \] to make \(T_2 \) the subject.

140. Transpose the formula \[\frac{V}{l} = \frac{\pi pd^4}{8\eta \ell} \] to make \(d \) the subject.

141. Given that \(V = \frac{R}{R - r} \), express \(R \) in terms of \(V \) and \(r \).

142. Given that \(V = \frac{5R}{R - r} \), express \(R \) in terms of \(V \) and \(r \).

143. Given that \(g = \frac{f - 1}{f - 2} \), express \(f \) in terms of \(g \).

144. Given that \(x = \frac{y - 4}{y - 7} \), express \(y \) in terms of \(x \).

145. Given that \(\frac{D}{d} = \frac{\ell + p}{\ell - p} \), express \(p \) in terms of \(\ell, d \) and \(D \).

146. Given that \(R = \sqrt{\frac{2x}{x + y}} \), express \(x \) in terms of \(y \) and \(R \).

147. Given that \(p = \sqrt{\frac{1 - m^2}{m}} \), express \(m \) in terms of \(p \).

148. Given that \(k = \sqrt{\frac{1 - \ell^2}{3\ell}} \), express \(\ell \) in terms of \(k \).

149. Given that \(k = \sqrt{\frac{p + 1}{p - 2}} \), express \(p \) in terms of \(k \).

150. Given that \(\gamma = \frac{V_2 - V_1}{V_1 \theta} \), express \(V_1 \) in terms of \(\theta, \gamma \) and \(V_2 \).

151. Given that \(\alpha = \frac{\ell_2 - \ell_1}{\ell_1(\theta_2 - \theta_1)} \), express \(\ell_1 \) in terms of \(\theta_1, \theta_2, \alpha \) and \(\ell_2 \).

152. Given that \(p = \sqrt{\frac{3 + m^2}{m}} \), express \(m \) in terms of \(p \).

153. Given that \(k = \sqrt{\frac{5 + \ell^2}{4\ell}} \), express \(\ell \) in terms of \(k \).

154. Given \(a = p + cr \), make \(r \) the subject of the formula.

155. Given \(s = \pi r(h + r) \), make \(h \) the subject of the formula.
156. Given $V^2 = 2gh$, make g the subject of the formula.

157. Given $A = 2\pi R(R + H)$, make H the subject of the formula.

158. Given $t = 2\pi \sqrt{\frac{W}{gf}}$, make f the subject of the formula.

159. Given $V^2 = 2\rho \left(\frac{1}{x} - \frac{1}{a} \right)$, make a the subject of the formula.

160. Given $t = 2\pi \sqrt{\frac{W}{gf}}$, make g the subject of the formula.

161. Given $a = \sqrt{\frac{9\gamma \rho}{2\rho g}}$, make ν the subject of the formula.

162. Given $V = \frac{4\pi \rho d^3}{9e}$, make a the subject of the formula.

163. Given $\gamma = \frac{1}{\beta^2} \sqrt{\frac{2mV}{e}}$, make e the subject of the formula.

164. Given $I = \frac{mV}{R + R_a}$, make R_a the subject of the formula.

165. Given $2d \sin \theta = n\lambda$, make n the subject of the formula.

166. Given $v = a(Z - b)^2$, make b the subject of the formula.

167. Given $\frac{1}{2} m_a V^2 = ev$, make V the subject of the formula.

168. Given $p = \sqrt{2eV m_e}$, make m_e the subject of the formula.

169. Given $r = \frac{m_0 h^2 h^2}{\pi me^2}$, make e the subject of the formula.

170. Given $I = \frac{E}{R + r}$, make R the subject of the formula.

171. Given $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$, make f the subject of the formula.

172. Given $\frac{1}{v} + \frac{1}{u} = \frac{2}{r}$, make r the subject of the formula.

173. Given $\frac{1}{c} = \frac{1}{c_1} + \frac{1}{c_2}$, make c_1 the subject of the formula.

174. Given $\frac{1}{F} = \frac{1}{f_1} - \frac{1}{f_2}$, make f_2 the subject of the formula.

175. Given $IVt = m\ell + ft$, make t the subject of the formula.

176. Given $\frac{1}{2} v^2 = gh \sin \theta$, make v the subject of the formula.

177. Given $\beta = \frac{S_2 - S_1}{S_0}$, make S_1 the subject of the formula.

178. Given $n = \frac{R}{R + r}$, make R the subject of the formula.

179. Given $F = \frac{1}{4\pi \varepsilon_0} \frac{Q_1 Q_2}{r^2}$, make r the subject of the formula.

180. Given $d = n\left(1 - \frac{1}{n}\right)$, make n the subject of the formula.

181. Given $\frac{1}{f} = (n - 1)\left(\frac{1}{n} + \frac{1}{r_2}\right)$, make r_2, the subject of the formula.

182. Make m the subject of the formula.

\[k = \sqrt{\frac{3 + 5m^2}{r}}. \]

183. Make m the subject of the formula.

\[p = \sqrt{\frac{5 - 3m^2}{n}}. \]

184. Make p the subject of the formula.

\[k = \sqrt{\frac{1 - 2p^2}{5p}}. \]

185. If $\frac{1}{R} = \frac{1}{V} - \frac{3}{T}$, express V in terms of R and T.

186. If $\frac{1}{R} = \frac{2}{V} - \frac{3}{T}$, express T in terms of R and V.

187. Given the formula $6\sigma \pi a = \frac{4}{3} \pi a^3 (p - q)g$.

Make v the subject of the formula.

188. Write a formula for the statement, a number m is equal to half the sum of two numbers p and q.
189. Write a formula for the statement, a number p is equal to three-quarters the difference of two numbers q and r, given that q is greater than r.

190. (a) A bag of coins contains p ten-cents coins and q twenty-cents coins. The total value of the coins is SR. Determine a formula for R in terms of p and q.
(b) If $p = 5$ and $q = 10$, find R.

191. A rectangle is 3ℓ metres long and ℓ metres wide. Write down a formula for:
(a) P, where P metres is the perimeter of the rectangle.
(b) A, where A metres squared is the area of the rectangle.

192. A rectangle is 5ℓ metres long and 2ℓ metres wide. Write down a formula for:
(a) P, where P metres is the perimeter of the rectangle.
(b) A, where A metres squared is the area of the rectangle.

193. A rectangle is $3y$ cm long and $2x$ cm wide.
(a) Write down a formula for the perimeter of the rectangle.
(b) Find the perimeter of the rectangle when $x = 4$ cm and $y = 5$ cm.

194. A rectangular box is 3ℓ cm long, h cm wide and h cm high.
(a) Write down a formula for V, the volume of the box in cm3.
(b) Determine the volume of a box measuring 30 cm by 14 cm by 5 cm.

195. A rectangle box is ℓ m long, b m wide and h m high.
(a) Write down a formula for V, the volume of the box in m3.
(b) Calculate the volume of a box measuring 25 m by 16 m by 4 m.

196. If $I = \frac{PRT}{100}$, evaluate I when $P = 200$, $R = 8$ and $T = 3$.

197. If $I = \frac{PRT}{100}$, evaluate I when $P = 300$, $R = 7$ and $T = 5$.

198. If $P = 2(\ell + b)$, evaluate P when $\ell = 8$ and $b = 3$.

199. If $P = 2(\ell + b)$, evaluate P when $\ell = 9$ and $b = 4$.

200. Given $P = \frac{nRT}{V}$, evaluate P when $n = 3$, $R = 15$, $T = 18$ and $V = 9$.

201. Given that $v = \frac{u - t}{5}$, evaluate v when $u = 15$ and $t = 5$.

202. If $K = \frac{WV^2}{2g}$, evaluate K when $W = 48$, $V = 15$ and $g = 32$.

203. If $S = \pi d n$, evaluate d when $S = 55$, $\pi = \frac{22}{7}$ and $n = 0.7$.

204. If $K = \frac{WV^2}{2g}$, evaluate W when $V = 10$, $g = 32$ and $K = 150$.

205. If $v = u + at$, evaluate u when $v = 103$, $a = 5$ and $t = 9.5$.

206. If $v = u + at$, evaluate a when $u = 3$, $v = 9$ and $t = 4$.

207. Evaluate a from the formula $P = Wa + b$ when $P = 40$, $W = 4$ and $b = 15$.

208. If $v^2 = u^2 + 2as$, evaluate a when $v = 5$, $u = 2$ and $s = 7$.

209. If $P = 100r - t$, determine the value of t when $P = 50$ and $r = 0.25$.

210. (a) Make R the subject of the formula $\frac{c}{100} + R$.
(b) Evaluate R when $P = 30$ and $c = 450$.

211. (a) Make t the subject of the formula $Z = \frac{v}{2} - 4t$.
(b) Evaluate t when $x = 8$ and $z = 3$.

212. Evaluate r from the formula:
$A = \pi r \ell$ when $\pi = \frac{22}{7}$, $A = 440$ and $\ell = 10$.

213. If $K = \frac{WV^2}{2g}$, evaluate K when $W = 128$, $V = 20$ and $g = 32$.

214. (a) Make a the subject of the formula $x = ut + \frac{1}{2}at^2$.
(b) Given that $u = 3$, $x = 8$ and $t = 2$, solve for a.

215. (a) Make a the subject of the formula $v^2 = u^2 + 2ax$.
(b) Given that $u = 0$, $v = 10$ and $x = 25$, solve for a.
216. If \(V = \pi r^2 h \), evaluate \(h \) when \(V = 308 \), \(\pi = \frac{22}{7} \) and \(r = 7 \).

217. Given that \(x = ut + \frac{1}{2}at^2 \), evaluate \(x \) when
\[u = 3, \ t = 5 \text{ and } a = 4. \]

218. Given that \(v^2 = u^2 + 2ax \), make \(a \) the subject of the formula. Hence evaluate \(a \) when
\[u = 2, \ v = 4 \text{ and } x = 9. \]

219. Given that \(V = 2\ell b + 2\ell h + 2bh \), evaluate \(V \) when
\[\ell = 9, \ b = 5 \text{ and } h = 3. \]

220. Given that \(v^2 = u^2 + 2ax \), make \(x \) the subject of the formula. Hence, evaluate \(x \) when
\[u = 2, \ v = 5 \text{ and } a = 7. \]

221. Given that \(v^2 = u^2 + 2ax \), evaluate \(v \) when
\[u = 5, \ a = 3 \text{ and } x = 4. \]

222. Given that \(V = \pi r^2 h \), make \(h \) the subject of the formula. Hence, evaluate \(h \) when
\[\pi = \frac{22}{7}, \ r = 7 \text{ and } V = 616. \]

223. Given the formula \(v = u + at \), calculate the value of \(v \), when \(u = 7, \ a = -3 \) and \(t = 2 \).

224. (a) Make \(r \) the subject of the formula \(V = \pi r^2 h \).

(b) Given that \(V = 225, \ \pi = \frac{22}{7} \text{ and } h = 14 \), solve for \(r \).

225. (a) Make \(r \) the subject of the formula \(V = \frac{1}{3} \pi r^2 h \).

(b) Calculate the value of \(r \) when \(V = 44, \ h = 7 \text{ and } \pi = \frac{22}{7} \).

226. (a) Make \(\ell \) the subject of the formula \(t = 2\pi \sqrt[3]{\frac{\ell}{g}} \).

(b) Calculate \(\ell \) when \(\pi = \frac{22}{7}, g = 10 \text{ and } t = 14 \).

227. Transpose \(T = 2\pi \sqrt[3]{\frac{\ell}{g}} \) for \(g \). Evaluate \(g \) when \(\ell = 40 \) and \(T = 12.6 \).

228. Transpose \(T = 2\pi \sqrt[3]{\frac{\ell}{g}} \) for \(\ell \). Evaluate \(\ell \) when \(g = 10, \ T = 22 \text{ and } \pi = \frac{22}{7} \).

229. (a) Given that \(t = 2\pi \sqrt[3]{\frac{\ell}{g}} \), make \(\ell \) the subject of the formula.

(b) Calculate \(t \) when \(\pi = \frac{22}{7}, \ \ell = 980 \text{ and } g = 9.8 \).

(c) Calculate \(\ell \) when \(\pi = \frac{22}{7}, \ t = 11 \text{ and } g = 10 \).